113 Class Problems: Irreducible Elements and Unique Factorization Domains

1. Is the polynomial $2x^2 - 4$ irreducible in $\mathbb{C}[x]$? How about in $\mathbb{R}[x]$, $\mathbb{Q}[x]$ or $\mathbb{Z}[x]$? Solutions: $\mathbb{C}[x_1]$: $2x^2 - 4 = 2(x + 12)(x - 12)$ \Rightarrow in $\mathbb{C}[x_2]$ $\mathbb{R}[x_1]$: $2x^2 - 4 = 2(x + 12)(x - 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = 2(x + 12)(x - 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 4)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 4)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 4)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 4)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $2x^2 - 4 = (a = 12)(c = 12)$ \Rightarrow *Leaducible* $\mathbb{R}[x_1]$: $\mathbb{R}[x_1]$:

no roots in Q.

- 3. Consider the subring $\mathbb{Z}[\sqrt{-5}] \subset \mathbb{C}$
 - (a) Prove that $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$
 - (b) If $a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ is non-zero, what is the minimum possible value of $|a + b\sqrt{-5}|^2$, the square of the absolute value?
 - (c) Using part (b) determine $\mathbb{Z}[\sqrt{-5}]^*$, the units in $\mathbb{Z}[\sqrt{-5}]$.
 - (d) Prove that $2, 3, 1 + \sqrt{-5}, 1 \sqrt{-5}$ are non-associated elements of $\mathbb{Z}[\sqrt{-5}]$.
 - (e) Prove that $2, 3, 1 + \sqrt{-5}, 1 \sqrt{-5}$ are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$.
 - (f) Prove that $\mathbb{Z}[\sqrt{-5}]$ is **not** a UFD.

Solutions:

a) $(\sqrt{-s})^2 = -S \in \mathbb{Z} \implies \mathbb{Z}(\sqrt{-s}) = \{a+b\sqrt{-s} \mid q, b \in \mathbb{Z}\}$ b) |a+bT-s|2 = a2+ 562, a, b = Z =) $|a+b\sqrt{-5}|^2 \ge 1$ if $a, b \in \mathbb{Z}$. Min value is when $a=\pm 1$ and b=0. < > < , B E Z [-[-s] => 1 < 1, 1B] > 1 $\alpha \beta = 1 \implies (\alpha l^2 (\beta l^2 = l \implies) / \alpha l^2 = / \beta l^2 = l \implies \alpha = \pm l$ =) Z((-s)* d) 2,3,1+T-s, 1-T-s are pairwise non-associated as Elt-s] = {+1} and non is a negative of another e) $Z = \kappa \beta$ =) $Z^2 = |\alpha|^2 |\beta|^2 =) |\alpha| = 1, 2, 4$ a2+562=2 hos no integer solutions -) lac]= 1 on 4 1~12=1 => ~ e Z[1-5]*, 1~12=4 => 1B12=1 => B e Z(1-5]* =) Z investacible. Same logic shows 3, 1+1-5, 1-1-5 are all included two non-associated $4) \quad G = 2 \cdot 3 = (1 + \tau - s)(1 - \tau - s)$ incolucible Factorization => Z(T=>] Ant a UFO Page 2